8 research outputs found

    Variable effects of cyclophosphamide in rodent models of experimental allergic encephalomyelitis

    No full text
    In this study, we have evaluated the effects of cyclophosphamide on the development of experimental allergic encephalomyelitis (EAE) in four EAE rodent models: monophasic EAE in Lewis rats, protracted relapsing (PR)-EAE in DA rats, myelin oligodendrocyte protein (MOG)-induced EAE in C57Bl/6 mice and proteolipid protein (PLP)-induced EAE in Swiss/Jackson Laboratory (SJL) mice. Cyclophosphamide, administered either prophylactically or therapeutically, suppressed most strongly the clinical symptoms of PR-EAE in DA rats. Treated rats in this group also exhibited the lowest degree of inflammatory infiltration of the spinal cord, as well as the lowest levels of nuclear factor kappa B, interleukin-12 and interferon-gamma. Cyclophosphamide prophylactically, but not therapeutically, also delayed significantly the onset of EAE in Lewis rats. In contrast, regardless of the treatment regimen used, was unable to influence the clinical course of EAE in either MOG-induced EAE in C57Bl/6 mice or PLP-induced EAE in SJL mice. This heterogeneous pharmacological response to cyclophosphamide suggests that significant immunopathogenic differences exist among these EAE rodent models that must be considered when designing preclinical studies. In addition, the effectiveness of cyclophosphamide in dark Agouti (DA) rats with PR-EAE suggests that this may be a particularly useful model for studying novel therapeutic approaches for refractory and rapidly worsening multiple sclerosis in human patients

    Molecular classification of nodal metastasis in primary larynx squamous cell carcinoma

    No full text
    Classification and prognosis of larynx squamous cell carcinoma (LSCC) depends on clinical and histopathological examination. Currently, expression profiling harbors the potential to investigate, classify, and better manage cancer. Gene expression profiles of 22 primary LSCCs were analyzed by microarrays containing 19,200 cDNAs. GOAL functionally classified differentially expressed genes, and a novel "in silico" procedure identified physical gene clusters differentially transcribed. A signature of 158 genes differentiated tumors with nodal metastasis. A novel statistical method allowed categorization of metastatic tumors into 2 distinct subgroups of differential gene expression patterns. Among genes correlated to nodal metastatic progression, we verified in vitro that NM23-H3 reduced cell motility and TRIM8 were a growth suppressor. Six chromosomal regions were specifically downregulated in metastatic tumors. This large-scale gene expression analysis in LSCC provides information on changes in genomic activity associated with lymphonodal metastasis and identifies molecules that might prove useful as novel therapeutic targets

    Molecular classification of nodal metastasis in primary larynx squamous cell carcinoma

    No full text
    Classification and prognosis of larynx squamous cell carcinoma (LSCC) depends on clinical and histopathological examination. Currently, expression profiling harbors the potential to investigate, classify, and better manage cancer. Gene expression profiles of 22 primary LSCCs were analyzed by microarrays containing 19,200 cDNAs. GOAL functionally classified differentially expressed genes, and a novel "in silico" procedure identified physical gene clusters differentially transcribed. A signature of 158 genes differentiated tumors with nodal metastasis. A novel statistical method allowed categorization of metastatic tumors into 2 distinct subgroups of differential gene expression patterns. Among genes correlated to nodal metastatic progression, we verified in vitro that NM23-H3 reduced cell motility and TRIM8 were a growth suppressor. Six chromosomal regions were specifically downregulated in metastatic tumors. This large-scale gene expression analysis in LSCC provides information on changes in genomic activity associated with lymphonodal metastasis and identifies molecules that might prove useful as novel therapeutic targets
    corecore